A Segway RMP-based robotic transport system

نویسندگان

  • Hoa G. Nguyen
  • Greg Kogut
  • Ripan Barua
  • Aaron Burmeister
  • Narek Pezeshkian
  • Darren Powell
  • Nathan Farrington
  • Matt Wimmer
  • Brett Cicchetto
  • Chana Heng
  • Velia Ramirez
چکیده

In the area of logistics, there currently is a capability gap between the one-ton Army robotic Multifunction Utility/Logistics and Equipment (MULE) vehicle and a soldier’s backpack. The Unmanned Systems Branch at Space and Naval Warfare Systems Center (SPAWAR Systems Center, or SSC), San Diego, with the assistance of a group of interns from nearby High Tech High School, has demonstrated enabling technologies for a solution that fills this gap. A small robotic transport system has been developed based on the Segway Robotic Mobility Platform (RMP). We have demonstrated teleoperated control of this robotic transport system, and conducted two demonstrations of autonomous behaviors. Both demonstrations involved a robotic transporter following a human leader. In the first demonstration, the transporter used a vision system running a continuously adaptive mean-shift filter to track and follow a human. In the second demonstration, the separation between leader and follower was significantly increased using Global Positioning System (GPS) information. The track of the human leader, with a GPS unit in his backpack, was sent wirelessly to the transporter, also equipped with a GPS unit. The robotic transporter traced the path of the human leader by following these GPS breadcrumbs. We have additionally demonstrated a robotic medical patient transport capability by using the Segway RMP to power a mock-up of the Life Support for Trauma and Transport (LSTAT) patient care platform, on a standard NATO litter carrier. This paper describes the development of our demonstration robotic transport system and the various experiments conducted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Segway robotic mobility platform

The Segway Robotic Mobility Platform (RMP) is a new mobile robotic platform based on the self-balancing Segway Human Transporter (HT). The Segway RMP is faster, cheaper, and more agile than existing comparable platforms. It is also rugged, has a small footprint, a zero turning radius, and yet can carry a greater payload. The new geometry of the platform presents researchers with an opportunity ...

متن کامل

Segway CM-RMP Robot Soccer Player

The Segway Human Transporter (HT) is a one person dynamically selfbalancing transportation vehicle. The Segway Robot Mobility Platform (RMP) is a modification of the HT capable of being commanded by a computer for autonomous operation. With these platforms, we propose a new domain for human-robot coordination through a competitive game: Segway Soccer. The players include robots (RMPs) and human...

متن کامل

Turning Segways into Robust Human-Scale Dynamically Balanced Soccer Robots

The Segway Human Transport (HT) is a one person dynamically selfbalancing transportation vehicle. The Segway Robot Mobility Platform (RMP) is a modification of the HT capable of being commanded by a computer for autonomous operation. With these platforms, we propose a new domain for human-robot coordination through a competitive game: Segway Soccer. The players include robots (RMPs) and humans ...

متن کامل

Segway CMBalance Robot Soccer Player

The SegwayTM LLC company has provided a robust mobility platform on which to research human/robot coordination in an adversarial environment. The Segway Human Transport (HT) is a one person dynamically self-balancing transportation vehicle. The Segway Robot Mobility Platform (RMP) is a modification of the Human Transporter capable of being programmed for autonomous operation. With these platfor...

متن کامل

Autonomous robot navigation using optimal control of probabilistic regular languages

This paper addresses autonomous intelligent navigation of mobile robotic platforms based on the recently reported algorithms of language-measure-theoretic optimal control. Real-time sensor data and model-based information on the robot’s motion dynamics are fused to construct a probabilistic finite state automaton model that dynamically computes a time-dependent discrete-event supervisory contro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002